
Lecture 10: Parallel Scheduling

CSE599W: Spring 2018

NOTE

● Office hour CSE 220 2:30pm - 3:30pm

● No class on next Thursday (OSDI)

Where are we

Gradient Calculation (Differentiation API)

Computational Graph Optimization and Execution

Runtime Parallel Scheduling

GPU Kernels, Optimizing Device Code

Programming API

Accelerators and Hardwares

User API

System
Components

Architecture

High level Packages

Where are we

Gradient Calculation (Differentiation API)

Computational Graph Optimization and Execution

Runtime Parallel Scheduling

Programming API

GPU Kernels, Optimizing Device Code

Accelerators and Hardwares

Parallelization Problem

● Parallel execution of concurrent kernels
● Overlap compute and data transfer

Parallel over multiple streams

Serial execution

Recap: Deep Learning Training Workflow
Gradient Calculation Interactions with Model

Parameter Update

Questions to be answered

● What are common patterns of parallelization

● How can we easily achieve these patterns

● What about dynamic style program

Model Parallel Training

● Map parts of workload to different
devices

● Require special dependency patterns
(wave style)
○ e.g. LSTM

Data Parallelism

● Train replicated version of model
in each machine

● Synchronize the gradient

Data Parallel Training

The Gap for Communication

fullc-forward

fullc-forward

fullc-backward

fullc-backward

softmax-forward softmax-backward

log-loss

w1

w2 g2

g1

data

label

sync g1
update w1

Iteration T Iteration T + 1

fullc-forward

fullc-forward

softmax-forward

log-loss

w1

w2

data

label

sync g2
update w2

Synchronization

Which operations can run in currently with synchronization of g2/w2?

Parallel Program are Hard to Write

fullc-forward

fullc-forward

fullc-backward

fullc-backward

softmax-forward softmax-backward

log-loss

w1

w2 g2

g1

data

label

sync g1
update w1

Iteration T Iteration T + 1

fullc-forward

fullc-forward

softmax-forward

log-loss

w1

w2

data

label

sync g2
update w2

Synchronization

We need a automatic scheduler

Goal of Scheduler Interface

A = 2

B = A + 1C = A + 2

D = B * C

● Write Serial Program
● Possibly dynamically (not declare graph

beforehand)

● Run in Parallel
● Respect serial execution order

Discussion: How to schedule the following ops

● Random number generator

● Memory recycling

● Cross device copy

● Send data over network channel

A = 2

B = A + 1C = A + 2

D = B * C

Data Flow Dependency

A = 2

B = A + 1C = A + 2

D = B * C

A = 2
B = A + 1
C = A + 2
D = B * C

Code Dependency

Write After Read Mutation

A = 2
B = A + 1
C = A + 2
A = 3

A = 2

B = A + 1C = A + 2

A = 3

DependencyCode

Memory Recycle

A = 2
B = A + 1
C = A + 2

A.__del__()

A = 2

B = A + 1C = A + 2

A.__del__()

Code Dependency

Random Number Generator

rnd = RandomNGenerator()

B = rnd.uniform(10, -10)

C = rnd.uniform(10, -10)

rnd = RandomNGenerator()

rnd.uniform(10, -10)

rnd.uniform(10, -10)

DependencyCode

Goal of Scheduler Interface

● Schedule any resources
○ Data
○ Random number generator
○ Network communicator

● Schedule any operation

DAG Graph based scheduler

engine.push(lambda op, deps=[])
A = 2

C = A + B

● Explicit push operation and its dependencies
● Can reuse the computation graph structure
● Useful when all results are immutable
● Used in typical frameworks (e.g. TensorFlow)

● What are the drawbacks?

Interface:
B = 3

Pitfalls when using Scheduling Mutations

Write after Read
tf.assign(A, B + 1)
tf.assign(T, B + 2)
tf.assign(B, 2)

Read after Write
T = tf.assign(B, B + 1)
tf.assign(A, B + 2)

A mutation aware scheduler
can solve these problems much
easier than DAG based scheduler

MXNet Program for Data Parallel Training
for dbatch in train_iter:

 % iterating on GPUs

 for i in range(ngpu):

 % pull the parameters

 for key in update_keys:

 kvstore.pull(key, execs[i].weight_array[key])

 % compute the gradient

 execs[i].forward(is_train=True)

 execs[i].backward()

 % push the gradient

 for key in update_keys:

 kvstore.push(key, execs[i].grad_array[key])

Mutation aware Scheduler: Tag each Resource

A.data

rnd.gen

v1

B.data

C.data

A.data

rnd.gen

B.data

C.data

v2

v3

v4

Original Resources Tagged Resources Code

A.var = engine.new_variable()

B.var = engine.new_variable()

C.var = engine.new_variable()

rnd.var = engine.new_variable()

Mutation aware Scheduler: Push Operation

Execution Function (box)

A.data

B.data

v2

v1

lambda: B.data=A.data+1

The Tagged Data Pack Reference to Related
Things into Execution
Function (via Closure)

engine.push(Exec Function ,
read = [],

mutate= [])

Push the Operation
to Engine

v1

A.data B.data

v2

Example Scheduling: Data Flow

engine.push(lambda: A.data=2,
 read=[], mutate= [A.var])

engine.push(lambda: B.data=A.data+1,
 read=[A.var], mutate= [B.var])

engine.push(lambda: D.data=A.data * B.data,
 read=[A.var, B.var], mutate=[D.var])

A = 2

B = A + 1

D = A * B

Example Scheduling: Memory Recycle

engine.push(lambda: A.data=2,
 read=[], mutate= [A.var])

engine.push(lambda: B.data=A.data+1,
 read=[A.var], mutate= [B.var])

engine.push(lambda: A.data._del__(),
 read=[], mutate= [A.var])

A = 2

B = A + 1

A.__del__()

Example Scheduling: Random Number Generator

B = rnd.uniform(10, -10)

C = rnd.uniform(10, -10)

engine.push(lambda:
 B.data = rnd.gen.uniform(10,-10),
 read=[], mutate= [rnd.var])

engine.push(lambda:
 C.data = rnd.gen.uniform(10,-10),
 read=[], mutate= [rnd.var])

Queue based Implementation of scheduler

A

B

B = A + B {2}

C

C = A + 2 {1}

B = A + B {2}

● Like scheduling problem in OS

● Maintain a pending operation queue

● Schedule new operations with event update

Enqueue Demonstration
B = A + 1 (reads A, mutates B)

C = A + 2 (reads A, mutates C)

A = C * 2 (reads C, mutates A)

D = A + 3 (reads A, mutates D)

B’s queue:

C’s queue:

D’s queue:

A’s queue:

Enqueue Demonstration
B = A + 1 (reads A, mutates B)

C = A + 2 (reads A, mutates C)

A = C * 2 (reads C, mutates A)

D = A + 3 (reads A, mutates D)

A’s queue:

B’s queue:

C’s queue:

D’s queue:

Enqueue Demonstration
B = A + 1 (reads A, mutates B)

C = A + 2 (reads A, mutates C)

A = C * 2 (reads C, mutates A)

D = A + 3 (reads A, mutates D)

A’s queue:

B’s queue:

C’s queue:

D’s queue:

Enqueue Demonstration
B = A + 1 (reads A, mutates B)

C = A + 2 (reads A, mutates C)

A = C * 2 (reads C, mutates A)

D = A + 3 (reads A, mutates D)

A’s queue:

B’s queue:

C’s queue:

D’s queue:

Discuss: What is the update
policy of queue when an
operation finishes?

Update Policy

A

B

C

Queue

A = 2 {1}

B = 2 {1}

operation {wait counter}

operation and the number of

pending dependencies it need to

wait for

var

ready to read and

mutate

var

ready to read, but still have

uncompleted reads. Cannot mutate

var

still have uncompleted mutations.

Cannot read/write

Two operations are pushed. Because A and B are ready to write, we
decrease the pending counter to 0. The two ops are executed directly.

Ready/Running Ops
Request

Update Policy

A

B

C

Queue

A = 2

B = 2

operation {wait counter}

operation and the number of

pending dependencies it need to

wait for

var

ready to read and

mutate

var

ready to read, but still have

uncompleted reads. Cannot mutate

var

still have uncompleted mutations.

Cannot read/write

Two operations are pushed. Because A and B are ready to write, we
decrease the pending counter to 0. The two ops are executed directly.

Ready/Running Ops
Request

Update Policy

A

B

C

Queue

A = 2

B = 2

operation {wait counter}

operation and the number of

pending dependencies it need to

wait for

var

ready to read and

mutate

var

ready to read, but still have

uncompleted reads. Cannot mutate

var

still have uncompleted mutations.

Cannot read/write

Another two operations are pushed. Because A and B are not ready to
read. The pushed operations will be added to the pending queues of
variables they wait for.

Ready/Running Ops
Request

B = A + B {2}

C = A + 2 {2}

Update Policy

A

B

C

Queue

operation {wait counter}

operation and the number of

pending dependencies it need to

wait for

var

ready to read and

mutate

var

ready to read, but still have

uncompleted reads. Cannot mutate

var

still have uncompleted mutations.

Cannot read/write

Another two operations are pushed. Because A and B are not ready to
read. The pushed operations will be added to the pending queues of
variables they wait for.

Ready/Running Ops
Request

B = A + B {2} C = A + 2 {1}

B = A + B {2}

A = 2

B = 2

Update Policy

A

B

C

Queue

operation {wait counter}

operation and the number of

pending dependencies it need to

wait for

var

ready to read and

mutate

var

ready to read, but still have

uncompleted reads. Cannot mutate

var

still have uncompleted mutations.

Cannot read/write

Ready/Running Ops
Request

B = A + B {1}

B = 2

A=2 finishes, as a result, the pending reads on A are activated. B=A+B still
cannot run because it is still wait for B.

C = A + 2

A.del() {1}

Update Policy

A

B

C

Queue

operation {wait counter}

operation and the number of

pending dependencies it need to

wait for

var

ready to read and

mutate

var

ready to read, but still have

uncompleted reads. Cannot mutate

var

still have uncompleted mutations.

Cannot read/write

Ready/Running Ops
Request

B = A + B {1}

B = 2

A.del() is a mutate operation. So it need to wait on A until all
previous reads on A finishes.

C = A + 2

A.del() {1}

Update Policy

A

B

C

Queue

operation {wait counter}

operation and the number of

pending dependencies it need to

wait for

var

ready to read and

mutate

var

ready to read, but still have

uncompleted reads. Cannot mutate

var

still have uncompleted mutations.

Cannot read/write

Ready/Running Ops
Request

B=2 finishes running. B=A+B is able to run because all its
dependencies are satisfied. A.del() still need to wait for B=A+B to
finish for A to turn green

A.del() {1} B = A + B

Update Policy

A

B

C

Queue

operation {wait counter}

operation and the number of

pending dependencies it need to

wait for

var

ready to read and

mutate

var

ready to read, but still have

uncompleted reads. Cannot mutate

var

still have uncompleted mutations.

Cannot read/write

Ready/Running Ops
Request

B=2 finishes running. B=A+B is able to run because all its
dependencies are satisfied. A.del() still need to wait for B=A+B to
finish for A to turn green

A.del()

Take aways

● Automatic scheduling makes parallelization easier

● Mutation aware interface to handle resource contention

● Queue based scheduling algorithm

