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The Deep Learning Systems Juggle 

We won’t focus on a specific one, but will discuss the 
common and useful elements of these systems



Typical Deep Learning System Stack

Gradient Calculation (Differentiation API)

Computational Graph Optimization and Execution

Runtime Parallel Scheduling

GPU Kernels, Optimizing Device Code

Programming API

Accelerators and Hardwares

User API

System 
Components

Architecture

High level Packages

We will have 
lectures on each 
of the parts!



Typical Deep Learning System Stack

Gradient Calculation (Differentiation API)

Computational Graph Optimization and Execution

Runtime Parallel Scheduling

GPU Kernels, Optimizing Device Code

Programming API

Accelerators and Hardwares

User API



Example: Logistic Regression

Data Fully Connected Layer Softmax



import numpy as np

from tinyflow.datasets import get_mnist

def softmax(x):

   x = x - np.max(x, axis=1, keepdims=True)

   x = np.exp(x)

   x = x / np.sum(x, axis=1, keepdims=True)

   return x

# get the mnist dataset

mnist = get_mnist(flatten=True, onehot=True)

learning_rate = 0.5 / 100

W = np.zeros((784, 10))

for i in range(1000):

   batch_xs, batch_ys = mnist.train.next_batch(100)

   # forward

   y = softmax(np.dot(batch_xs, W))

   # backward

   y_grad = y - batch_ys

   W_grad = np.dot(batch_xs.T, y_grad)

   # update

   W = W - learning_rate * W_grad

Logistic Regression in Numpy

Forward computation:
Compute probability of each class y given input

● Matrix multiplication

○ np.dot(batch_xs, W)

● Softmax transform the result
○ softmax(np.dot(batch_xs, W))



import numpy as np

from tinyflow.datasets import get_mnist

def softmax(x):

   x = x - np.max(x, axis=1, keepdims=True)

   x = np.exp(x)

   x = x / np.sum(x, axis=1, keepdims=True)

   return x

# get the mnist dataset

mnist = get_mnist(flatten=True, onehot=True)

learning_rate = 0.5 / 100

W = np.zeros((784, 10))

for i in range(1000):

   batch_xs, batch_ys = mnist.train.next_batch(100)

   # forward

   y = softmax(np.dot(batch_xs, W))

   # backward

   y_grad = y - batch_ys

   W_grad = np.dot(batch_xs.T, y_grad)

   # update

   W = W - learning_rate * W_grad

Logistic Regression in Numpy

Manually calculate the gradient of weight 
with respect to the log-likelihood loss.

Exercise: Try to derive the gradient rule by 
yourself.



import numpy as np

from tinyflow.datasets import get_mnist

def softmax(x):

   x = x - np.max(x, axis=1, keepdims=True)

   x = np.exp(x)

   x = x / np.sum(x, axis=1, keepdims=True)

   return x

# get the mnist dataset

mnist = get_mnist(flatten=True, onehot=True)

learning_rate = 0.5 / 100

W = np.zeros((784, 10))

for i in range(1000):

   batch_xs, batch_ys = mnist.train.next_batch(100)

   # forward

   y = softmax(np.dot(batch_xs, W))

   # backward

   y_grad = y - batch_ys

   W_grad = np.dot(batch_xs.T, y_grad)

   # update

   W = W - learning_rate * W_grad

Logistic Regression in Numpy

Weight Update via SGD



import numpy as np

from tinyflow.datasets import get_mnist

def softmax(x):

   x = x - np.max(x, axis=1, keepdims=True)

   x = np.exp(x)

   x = x / np.sum(x, axis=1, keepdims=True)

   return x

# get the mnist dataset

mnist = get_mnist(flatten=True, onehot=True)

learning_rate = 0.5 / 100

W = np.zeros((784, 10))

for i in range(1000):

   batch_xs, batch_ys = mnist.train.next_batch(100)

   # forward

   y = softmax(np.dot(batch_xs, W))

   # backward

   y_grad = y - batch_ys

   W_grad = np.dot(batch_xs.T, y_grad)

   # update

   W = W - learning_rate * W_grad

Discussion: Numpy based Program

● Talk to your neighbors 2-3 person:)

● What do we need to do to support 
deeper neural networks

● What are the complications 



Logistic Regression in Numpy

● Computation in Tensor Algebra  
○ softmax(np.dot(batch_xs, W))

● Manually calculate the gradient
○ y_grad = y - batch_ys

○ W_grad = np.dot(batch_xs.T, y_grad)

● SGD Update Rule
○ W = W - learning_rate * W_grad



import tinyflow as tf

from tinyflow.datasets import get_mnist

# Create the model

x = tf.placeholder(tf.float32, [None, 784])

W = tf.Variable(tf.zeros([784, 10]))

y = tf.nn.softmax(tf.matmul(x, W))

# Define loss and optimizer

y_ = tf.placeholder(tf.float32, [None, 10])

cross_entropy = tf.reduce_mean(-tf.reduce_sum(y_ * tf.log(y), reduction_indices=[1]))

# Update rule

learning_rate = 0.5

W_grad = tf.gradients(cross_entropy, [W])[0]

train_step = tf.assign(W, W - learning_rate * W_grad)

# Training Loop

sess = tf.Session()

sess.run(tf.initialize_all_variables())

mnist = get_mnist(flatten=True, onehot=True)

for i in range(1000):

   batch_xs, batch_ys = mnist.train.next_batch(100)

   sess.run(train_step, feed_dict={x: batch_xs, y_:batch_ys})

Logistic Regression in TinyFlow (TensorFlow like API)

Forward Computation Declaration



Logistic Regression in TinyFlow
import tinyflow as tf

from tinyflow.datasets import get_mnist

# Create the model

x = tf.placeholder(tf.float32, [None, 784])

W = tf.Variable(tf.zeros([784, 10]))

y = tf.nn.softmax(tf.matmul(x, W))

# Define loss and optimizer

y_ = tf.placeholder(tf.float32, [None, 10])

cross_entropy = tf.reduce_mean(-tf.reduce_sum(y_ * tf.log(y), reduction_indices=[1]))

# Update rule

learning_rate = 0.5

W_grad = tf.gradients(cross_entropy, [W])[0]

train_step = tf.assign(W, W - learning_rate * W_grad)

# Training Loop

sess = tf.Session()

sess.run(tf.initialize_all_variables())

mnist = get_mnist(flatten=True, onehot=True)

for i in range(1000):

   batch_xs, batch_ys = mnist.train.next_batch(100)

   sess.run(train_step, feed_dict={x: batch_xs, y_:batch_ys})

Loss function Declaration



Logistic Regression in TinyFlow
import tinyflow as tf

from tinyflow.datasets import get_mnist

# Create the model

x = tf.placeholder(tf.float32, [None, 784])

W = tf.Variable(tf.zeros([784, 10]))

y = tf.nn.softmax(tf.matmul(x, W))

# Define loss and optimizer

y_ = tf.placeholder(tf.float32, [None, 10])

cross_entropy = tf.reduce_mean(-tf.reduce_sum(y_ * tf.log(y), reduction_indices=[1]))

# Update rule

learning_rate = 0.5

W_grad = tf.gradients(cross_entropy, [W])[0]

train_step = tf.assign(W, W - learning_rate * W_grad)

# Training Loop

sess = tf.Session()

sess.run(tf.initialize_all_variables())

mnist = get_mnist(flatten=True, onehot=True)

for i in range(1000):

   batch_xs, batch_ys = mnist.train.next_batch(100)

   sess.run(train_step, feed_dict={x: batch_xs, y_:batch_ys})

Automatic Differentiation: Details 
in next lecture!



Logistic Regression in TinyFlow
import tinyflow as tf

from tinyflow.datasets import get_mnist

# Create the model

x = tf.placeholder(tf.float32, [None, 784])

W = tf.Variable(tf.zeros([784, 10]))

y = tf.nn.softmax(tf.matmul(x, W))

# Define loss and optimizer

y_ = tf.placeholder(tf.float32, [None, 10])

cross_entropy = tf.reduce_mean(-tf.reduce_sum(y_ * tf.log(y), reduction_indices=[1]))

# Update rule

learning_rate = 0.5

W_grad = tf.gradients(cross_entropy, [W])[0]

train_step = tf.assign(W, W - learning_rate * W_grad)

# Training Loop

sess = tf.Session()

sess.run(tf.initialize_all_variables())

mnist = get_mnist(flatten=True, onehot=True)

for i in range(1000):

   batch_xs, batch_ys = mnist.train.next_batch(100)

   sess.run(train_step, feed_dict={x: batch_xs, y_:batch_ys})

SGD update rule



Logistic Regression in TinyFlow
import tinyflow as tf

from tinyflow.datasets import get_mnist

# Create the model

x = tf.placeholder(tf.float32, [None, 784])

W = tf.Variable(tf.zeros([784, 10]))

y = tf.nn.softmax(tf.matmul(x, W))

# Define loss and optimizer

y_ = tf.placeholder(tf.float32, [None, 10])

cross_entropy = tf.reduce_mean(-tf.reduce_sum(y_ * tf.log(y), reduction_indices=[1]))

# Update rule

learning_rate = 0.5

W_grad = tf.gradients(cross_entropy, [W])[0]

train_step = tf.assign(W, W - learning_rate * W_grad)

# Training Loop

sess = tf.Session()

sess.run(tf.initialize_all_variables())

mnist = get_mnist(flatten=True, onehot=True)

for i in range(1000):

   batch_xs, batch_ys = mnist.train.next_batch(100)

   sess.run(train_step, feed_dict={x: batch_xs, y_:batch_ys})

Real execution happens here!



The Declarative Language: Computation Graph

a

b

mul add-const

3

● Nodes represents the computation (operation)

● Edge represents the data dependency between operations

Computational Graph for   a * b +3 



Computational Graph Construction by Step

W

x

matmult softmax

x = tf.placeholder(tf.float32, [None, 784])

W = tf.Variable(tf.zeros([784, 10]))

y = tf.nn.softmax(tf.matmul(x, W))

y



Computational Graph by Steps

W

x

matmult softmax log

y_

mul mean
y cross_entropy

y_ = tf.placeholder(tf.float32, [None, 10])

cross_entropy = tf.reduce_mean(-tf.reduce_sum(y_ * tf.log(y), reduction_indices=[1]))



Computational Graph Construction by Step

W

x

matmult softmax log

y_

mul mean

log-gradsoftmax-grad mul 1 / batch_size
matmult-
transpose

W_grad

y cross_entropy

W_grad = tf.gradients(cross_entropy, [W])[0] Automatic Differentiation, 
detail in next lecture!



Computational Graph Construction by Step

W

x

matmult softmax log

y_

mul mean

log-gradsoftmax-grad mul 1 / batch_size
matmult-
transpose

W_grad
mul

learning_rate

sub

assign y cross_entropy

train_step = tf.assign(W, W - learning_rate * W_grad)



Execution only Touches the Needed Subgraph

W

x

matmult softmax log

y_

mul mean

log-gradsoftmax-grad mul 1 / batch_size
matmult-
transpose

W_grad
mul

learning_rate

sub

assign y cross_entropy

sess.run(train_step, feed_dict={x: batch_xs, y_:batch_ys})



Discussion: Computational Graph

W

x

matmult softmax log

y_

mul mean

log-gradsoftmax-grad mul 1 / batch_size
matmult-
transpose

W_grad
mul

learning_rate

sub

assign y cross_entropy

● What is the benefit of computational graph?
● How can we deploy the model to mobile devices?



Discussion: Numpy vs TF Program

import numpy as np

from tinyflow.datasets import get_mnist

def softmax(x):

   x = x - np.max(x, axis=1, keepdims=True)

   x = np.exp(x)

   x = x / np.sum(x, axis=1, keepdims=True)

   return x

# get the mnist dataset

mnist = get_mnist(flatten=True, onehot=True)

learning_rate = 0.5 / 100

W = np.zeros((784, 10))

for i in range(1000):

   batch_xs, batch_ys = mnist.train.next_batch(100)

   # forward

   y = softmax(np.dot(batch_xs, W))

   # backward

   y_grad = y - batch_ys

   W_grad = np.dot(batch_xs.T, y_grad)

   # update

   W = W - learning_rate * W_grad

import tinyflow as tf

from tinyflow.datasets import get_mnist

# Create the model

x = tf.placeholder(tf.float32, [None, 784])

W = tf.Variable(tf.zeros([784, 10]))

y = tf.nn.softmax(tf.matmul(x, W))

# Define loss and optimizer

y_ = tf.placeholder(tf.float32, [None, 10])

cross_entropy = tf.reduce_mean(-tf.reduce_sum(y_ * tf.log(y), reduction_indices=[1]))

# Update rule

learning_rate = 0.5

W_grad = tf.gradients(cross_entropy, [W])[0]

train_step = tf.assign(W, W - learning_rate * W_grad)

# Training Loop

sess = tf.Session()

sess.run(tf.initialize_all_variables())

mnist = get_mnist(flatten=True, onehot=True)

for i in range(1000):

   batch_xs, batch_ys = mnist.train.next_batch(100)

   sess.run(train_step, feed_dict={x: batch_xs, y_:batch_ys})

What is the benefit/drawback of the TF model vs Numpy Model



Typical Deep Learning System Stack

Gradient Calculation (Differentiation API)

Computational Graph Optimization and Execution

Runtime Parallel Scheduling

Programming API

System 
Components

GPU Kernels, Optimizing Device Code

Accelerators and Hardwares



Computation Graph Optimization

W

x

matmult softmax log

y_

mul

log-gradsoftmax-grad mul
matmult-
transpose

W_grad
mul

learning_rate

sub

assign y

● E.g. Deadcode elimination
● Memory planning and optimization 
● What other possible optimization can we do given a computational 

graph?



Parallel Scheduling 
● Code need to run parallel on multiple devices and worker threads
● Detect and schedule parallelizable patterns
● Detail lecture on later

MXNet Example



Typical Deep Learning System Stack

Gradient Calculation (Differentiation API)

Programming API

Computational Graph Optimization and Execution

Runtime Parallel Scheduling

GPU Kernels, Optimizing Device Code

Accelerators and Hardwares

Architecture



GPU Acceleration 

● Most existing deep learning programs 
runs on GPUs

● Modern GPU have Teraflops of 
computing power



Typical Deep Learning System Stack

Gradient Calculation (Differentiation API)

Computational Graph Optimization and Execution

Runtime Parallel Scheduling

GPU Kernels, Optimizing Device Code

Programming API

Accelerators and Hardwares

User API

System 
Components

Architecture

Not a comprehensive list of elements 
The systems are still rapidly evolving :)



Supporting More Hardware backends



Each Hardware backend requires a software stack

Computational Graph Optimization and Execution

Runtime Parallel Scheduling

CUDA Library MKL Library TPU Library ARM Library

Gradient Calculation (Differentiation API)

Programming API

JS Library



New Trend: Compiler based Approach

Computational Graph Optimization and Execution

Runtime Parallel Scheduling

Gradient Calculation (Differentiation API)

Programming API

Tensor Compiler Stack

High level operator description



Links

● TinyFlow: 2K lines of code to build a TensorFlow like API
○ https://github.com/dlsys-course/tinyflow

● The source code used in the slide
○ https://github.com/dlsys-course/examples/tree/master/lecture3 

https://github.com/dlsys-course/tinyflow
https://github.com/dlsys-course/examples/tree/master/lecture3

