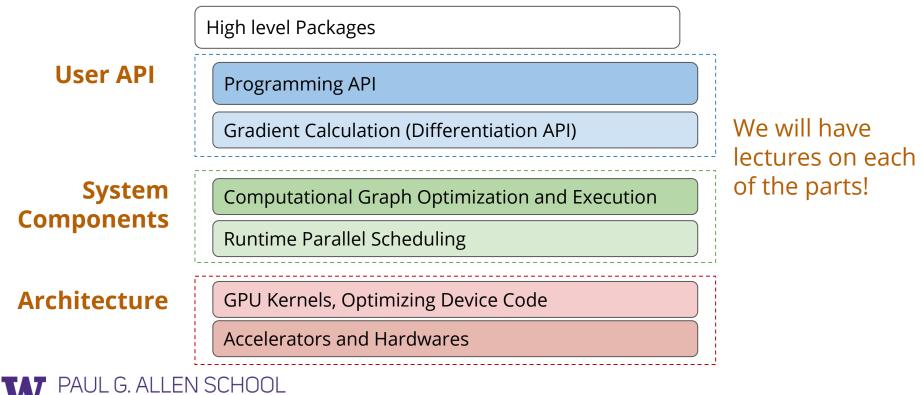
Lecture 3: Overview of Deep Learning System CSE599W: Spring 2018

The Deep Learning Systems Juggle

We won't focus on a specific one, but will discuss the common and useful elements of these systems

Typical Deep Learning System Stack



OF COMPUTER SCIENCE & ENGINEER

Typical Deep Learning System Stack

User API

Programming API

Gradient Calculation (Differentiation API)

Computational Graph Optimization and Executior

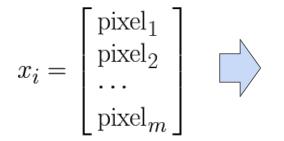
Runtime Parallel Scheduling

GPU Kernels, Optimizing Device Code

Accelerators and Hardwares

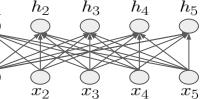
Example: Logistic Regression

Softmax



Data

$$h_k = w_k^T x_i \qquad \qquad P(y_i = k | x_i) = \frac{\exp(h_k)}{\sum_{j=1}^{10} \exp(h_i)}$$



Fully Connected Layer

З

import numpy as np from tinyflow.datasets import get mnist def softmax(x): x = x - np.max(x, axis=1, keepdims=True) x = np.exp(x)x = x / np.sum(x, axis=1, keepdims=True) return x # get the mnist dataset mnist = get mnist(flatten=True, onehot=True) learning rate = 0.5 / 100W = np.zeros((784, 10))for i in range(1000): batch xs, batch ys = mnist.train.next batch(100) # forward y = softmax(np.dot(batch_xs, W)) # backward y grad = y - batch ysW grad = np.dot(batch xs.T, y grad) # update W = W - learning rate * W grad

Forward computation: Compute probability of each class y given input

- Matrix multiplication
 - o np.dot(batch_xs, W)
- Softmax transform the result
 - o softmax(np.dot(batch_xs, W))

```
import numpy as np
from tinyflow.datasets import get mnist
def softmax(x):
  x = x - np.max(x, axis=1, keepdims=True)
  x = np.exp(x)
  x = x / np.sum(x, axis=1, keepdims=True)
   return x
# get the mnist dataset
mnist = get mnist(flatten=True, onehot=True)
learning rate = 0.5 / 100
W = np.zeros((784, 10))
for i in range(1000):
  batch xs, batch ys = mnist.train.next batch(100)
   # forward
  y = softmax(np.dot(batch xs, W))
   # backward
  y grad = y - batch vs
  W grad = np.dot(batch xs.T, y grad)
  # update
  W = W - learning_rate * W_grad
```


Manually calculate the gradient of weight with respect to the log-likelihood loss.

Éxercise: Try to derive the gradient rule by yourself.

```
import numpy as np
from tinyflow.datasets import get mnist
def softmax(x):
   x = x - np.max(x, axis=1, keepdims=True)
   x = np.exp(x)
   x = x / np.sum(x, axis=1, keepdims=True)
   return x
# get the mnist dataset
mnist = get mnist(flatten=True, onehot=True)
learning rate = 0.5 / 100
W = np.zeros((784, 10))
for i in range(1000):
   batch xs, batch ys = mnist.train.next batch(100)
   # forward
   y = softmax(np.dot(batch xs, W))
   # backward
   y \text{ grad} = y - \text{batch } ys
   W_grad = np.dot(batch_xs.T, y_grad)
   # update
   W = W - learning rate * W grad
```

COMPUTER SCIENCE & ENGINEERING

```
Weight Update via SGD
```

$$w \leftarrow w - \eta \nabla_w L(w)$$

Discussion: Numpy based Program

```
import numpy as np
from tinyflow.datasets import get mnist
def softmax(x):
   x = x - np.max(x, axis=1, keepdims=True)
   x = np.exp(x)
   x = x / np.sum(x, axis=1, keepdims=True)
   return x
# get the mnist dataset
mnist = get mnist(flatten=True, onehot=True)
learning rate = 0.5 / 100
W = np.zeros((784, 10))
for i in range(1000):
   batch xs, batch ys = mnist.train.next batch(100)
   # forward
   y = softmax(np.dot(batch xs, W))
   # backward
   y \text{ grad} = y - \text{batch } ys
   W grad = np.dot(batch xs.T, y grad)
   # update
   W = W - learning_rate * W_grad
```


- Talk to your neighbors 2-3 person:)
- What do we need to do to support deeper neural networks
- What are the complications

- Computation in Tensor Algebra
 - o softmax(np.dot(batch_xs, W))
- Manually calculate the gradient
 - o y_grad = y batch_ys
 - 0 W_grad = np.dot(batch_xs.T, y_grad)
- SGD Update Rule
 - 0 W = W learning_rate * W_grad

Logistic Regression in TinyFlow (TensorFlow like API)

import tinyflow as tf from tinyflow.datasets import get mnist # Create the model x = tf.placeholder(tf.float32, [None, 784]) W = tf.Variable(tf.zeros([784, 10]))v = tf.nn.softmax(tf.matmul(x, W)) # Define loss and optimizer y = tf.placeholder(tf.float32, [None, 10]) cross entropy = tf.reduce mean(-tf.reduce sum(y * tf.log(y), reduction indices=[1])) # Update rule learning rate = 0.5W grad = tf.gradients(cross entropy, [W])[0] train step = tf.assign(W, W - learning rate * W grad) # Training Loop sess = tf.Session() sess.run(tf.initialize all variables()) mnist = get mnist(flatten=True, onehot=True) for i in range(1000): batch xs, batch ys = mnist.train.next batch(100) sess.run(train step, feed dict={x: batch xs, y :batch ys})

Forward Computation Declaration

import tinvflow as tf from tinyflow.datasets import get mnist # Create the model x = tf.placeholder(tf.float32, [None, 784]) W = tf.Variable(tf.zeros([784, 10])) y = tf.nn.softmax(tf.matmul(x, W)) Loss function **Declaration** # Define loss and optimizer y = tf.placeholder(tf.float32, [None, 10]) cross_entropy = tf.reduce_mean(-tf.reduce_sum(y_ * tf.log(y), reduction_indices=[1])) # Update rule $P(\text{label} = k) = y_k$ $L(y) = \sum_{i=1}^{10} I(\text{label} = k) \log(y_i)$ learning rate = 0.5W grad = tf.gradients(cross entropy, [W])[0] train step = tf.assign(W, W - learning rate * W grad) # Training Loop sess = tf.Session() k=1sess.run(tf.initialize all variables()) mnist = get mnist(flatten=True, onehot=True) for i in range(1000): batch xs, batch ys = mnist.train.next batch(100) sess.run(train step, feed dict={x: batch xs, y :batch ys})

import tinyflow as tf from tinyflow.datasets import get mnist # Create the model x = tf.placeholder(tf.float32, [None, 784]) W = tf.Variable(tf.zeros([784, 10])) y = tf.nn.softmax(tf.matmul(x, W)) # Define loss and optimizer y = tf.placeholder(tf.float32, [None, 10]) cross entropy = tf.reduce mean(-tf.reduce sum(y * tf.log(y), reduction indices=[1])) # Update rule Automatic Differentiation: Details learning rate = 0.5in next lecture! W grad = tf.gradients(cross entropy, [W])[0] train step = tf.assign(W, W - learning rate * W grad) # Training Loop sess = tf.Session() sess.run(tf.initialize all variables()) mnist = get mnist(flatten=True, onehot=True) for i in range(1000): batch xs, batch ys = mnist.train.next batch(100) sess.run(train_step, feed_dict={x: batch_xs, y_:batch_ys})

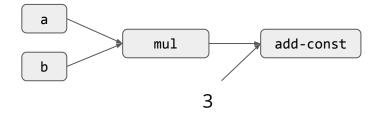
import tinyflow as tf from tinyflow.datasets import get mnist # Create the model x = tf.placeholder(tf.float32, [None, 784]) W = tf.Variable(tf.zeros([784, 10])) y = tf.nn.softmax(tf.matmul(x, W)) # Define loss and optimizer y = tf.placeholder(tf.float32, [None, 10]) cross entropy = tf.reduce mean(-tf.reduce sum(y * tf.log(y), reduction indices=[1])) # Update rule learning rate = 0.5W grad = tf.gradients(cross entropy, [W])[0] SGD update rule train_step = tf.assign(W, W - learning_rate * W_grad) # Training Loop sess = tf.Session() sess.run(tf.initialize all variables()) mnist = get mnist(flatten=True, onehot=True) for i in range(1000): batch xs, batch ys = mnist.train.next batch(100) sess.run(train step, feed_dict={x: batch_xs, y_:batch_ys})

import tinyflow as tf from tinyflow.datasets import get mnist # Create the model x = tf.placeholder(tf.float32, [None, 784]) W = tf.Variable(tf.zeros([784, 10])) y = tf.nn.softmax(tf.matmul(x, W)) # Define loss and optimizer y = tf.placeholder(tf.float32, [None, 10]) cross entropy = tf.reduce mean(-tf.reduce sum(y * tf.log(y), reduction indices=[1])) # Update rule learning rate = 0.5W grad = tf.gradients(cross entropy, [W])[0] train_step = tf.assign(W, W - learning_rate * W_grad) # Training Loop sess = tf.Session() sess.run(tf.initialize all variables()) mnist = get mnist(flatten=True, onehot=True) for i in range(1000): Real execution happens here! batch xs, batch ys = mnist.train.next batch(100) sess.run(train step, feed dict={x: batch xs, y :batch ys})

The Declarative Language: Computation Graph

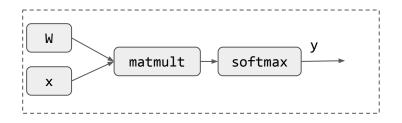
- Nodes represents the computation (operation)
- Edge represents the data dependency between operations

Computational Graph for **a** * **b** +3



Computational Graph Construction by Step

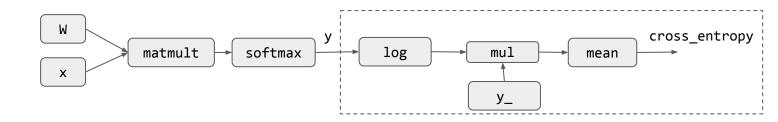
- x = tf.placeholder(tf.float32, [None, 784])
- W = tf.Variable(tf.zeros([784, 10]))
- y = tf.nn.softmax(tf.matmul(x, W))



Computational Graph by Steps

y_ = tf.placeholder(tf.float32, [None, 10])

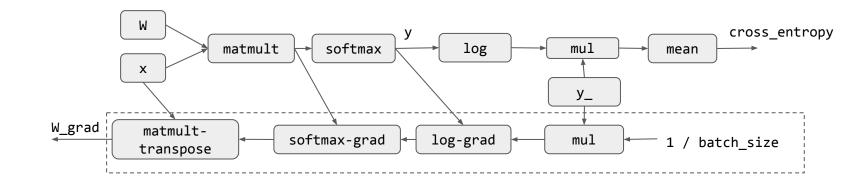
cross_entropy = tf.reduce_mean(-tf.reduce_sum(y_ * tf.log(y), reduction_indices=[1]))



Computational Graph Construction by Step

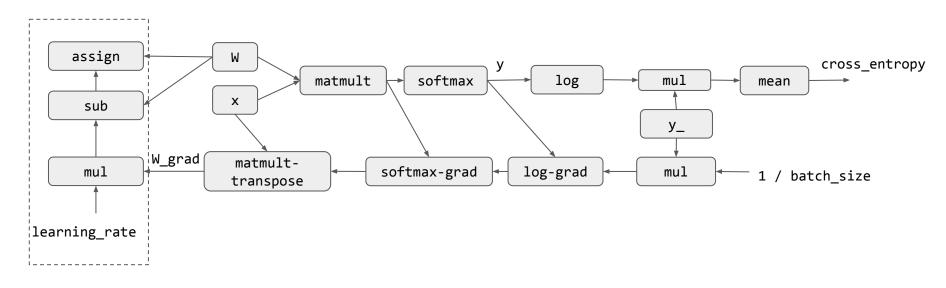
W_grad = tf.gradients(cross_entropy, [W])[0]

Automatic Differentiation, detail in next lecture!



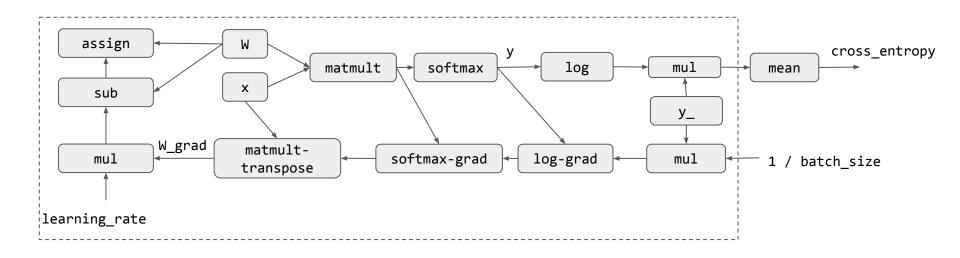
Computational Graph Construction by Step

train_step = tf.assign(W, W - learning_rate * W_grad)



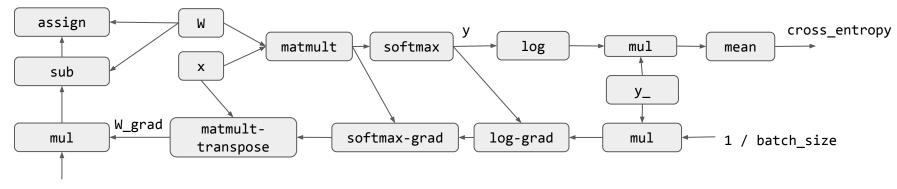
Execution only Touches the Needed Subgraph

sess.run(train_step, feed_dict={x: batch_xs, y_:batch_ys})



Discussion: Computational Graph

- What is the benefit of computational graph?
- How can we deploy the model to mobile devices?



learning_rate

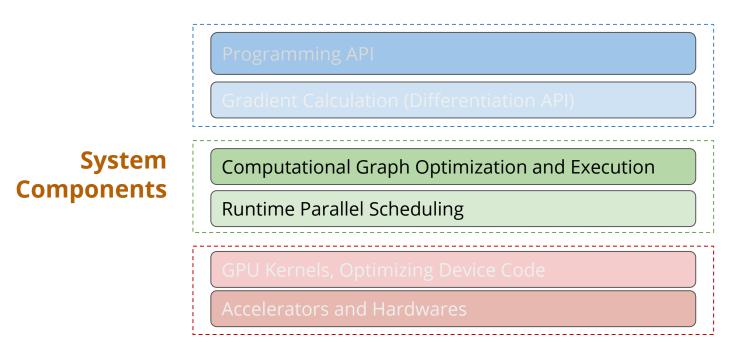
Discussion: Numpy vs TF Program

What is the benefit/drawback of the TF model vs Numpy Model

OF COMPUTER SCIENCE & ENGINEERING

```
import numpy as np
                                                                                   import tinyflow as tf
from tinyflow.datasets import get mnist
                                                                                   from tinyflow.datasets import get mnist
def softmax(x):
                                                                                   # Create the model
  x = x - np.max(x, axis=1, keepdims=True)
                                                                                   x = tf.placeholder(tf.float32, [None, 784])
   x = np.exp(x)
                                                                                   W = tf.Variable(tf.zeros([784, 10]))
  x = x / np.sum(x, axis=1, keepdims=True)
                                                                                   y = tf.nn.softmax(tf.matmul(x, W))
   return x
                                                                                   # Define loss and optimizer
# get the mnist dataset
                                                                                   y = tf.placeholder(tf.float32, [None, 10])
mnist = get mnist(flatten=True, onehot=True)
                                                                                   cross entropy = tf.reduce mean(-tf.reduce sum(y * tf.log(y), reduction indices=[1]))
learning rate = 0.5 / 100
                                                                                   # Update rule
W = np.zeros((784, 10))
                                                                                   learning rate = 0.5
for i in range(1000):
                                                                                   W grad = tf.gradients(cross entropy, [W])[0]
   batch_xs, batch_ys = mnist.train.next_batch(100)
                                                                                   train step = tf.assign(W, W - learning rate * W grad)
   # forward
                                                                                   # Training Loop
  y = softmax(np.dot(batch_xs, W))
                                                                                   sess = tf.Session()
   # backward
                                                                                   sess.run(tf.initialize all variables())
   y_grad = y - batch_ys
                                                                                   mnist = get mnist(flatten=True, onehot=True)
   W_grad = np.dot(batch_xs.T, y_grad)
                                                                                   for i in range(1000):
   # update
                                                                                      batch xs, batch ys = mnist.train.next batch(100)
   W = W - learning_rate * W_grad
                                                                                      sess.run(train step, feed dict={x: batch xs, y :batch ys})
   DALII G ALLENI
```

Typical Deep Learning System Stack



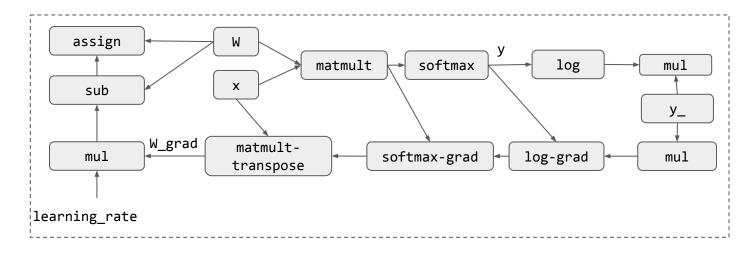
Computation Graph Optimization

• E.g. Deadcode elimination

PALIE GALLEN SI

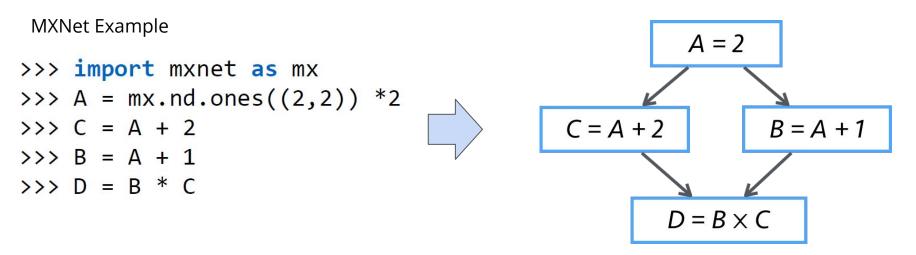
COMPUTER SCIENCE & ENGINEERING

- Memory planning and optimization
- What other possible optimization can we do given a computational graph?

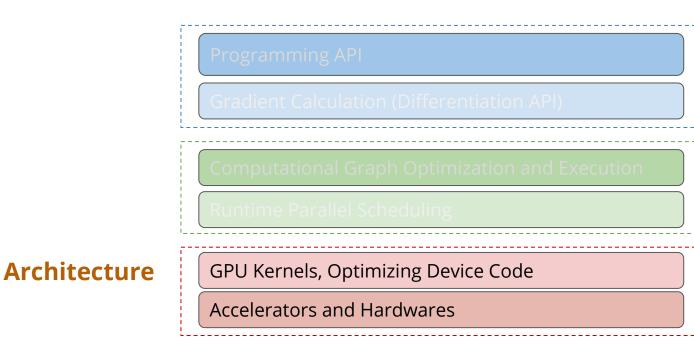


Parallel Scheduling

- Code need to run parallel on multiple devices and worker threads
- Detect and schedule parallelizable patterns
- Detail lecture on later



Typical Deep Learning System Stack



W PAUL G. ALLEN SCHOOL of computer science & engineering

GPU Acceleration

- Most existing deep learning programs runs on GPUs
- Modern GPU have Teraflops of computing power

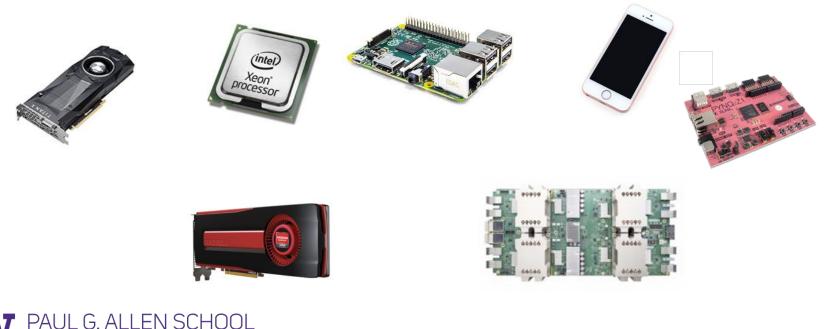
Typical Deep Learning System Stack

Not a comprehensive list of elements The systems are still rapidly evolving :)

User API Programming API Gradient Calculation (Differentiation API) System Computational Graph Optimization and Execution Components **Runtime Parallel Scheduling Architecture GPU Kernels, Optimizing Device Code** Accelerators and Hardwares

W PAUL G. ALLEN SCHOOL of computer science & engineering

Supporting More Hardware backends



W PAUL G. ALLEN SCHUUL of computer science & engineering

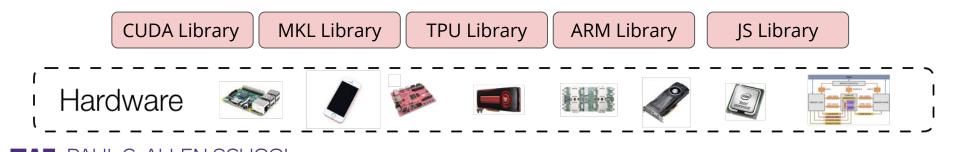
Each Hardware backend requires a software stack

Programming API

Gradient Calculation (Differentiation API)

Computational Graph Optimization and Execution

Runtime Parallel Scheduling



New Trend: Compiler based Approach

Programming API

Gradient Calculation (Differentiation API)

Computational Graph Optimization and Execution

Runtime Parallel Scheduling

High level operator description

Tensor Compiler Stack

Links

- TinyFlow: 2K lines of code to build a TensorFlow like API
 - <u>https://github.com/dlsys-course/tinyflow</u>
- The source code used in the slide
 - <u>https://github.com/dlsys-course/examples/tree/master/lecture3</u>

