## Hardware Specialization in Deep Learning CSE590W 18Sp, Thursday April 19th 2018 Thierry Moreau

# **Deep Learning Explosion**











## **Deep Learning Revolutionizing Computer Vision**



### **Source: NVIDIA blogpost, June 2016**



## **Compute Requirements is Steadily Growing**



Source: Eugenio Culurciello, An Analysis of Deep Neural Network Models for Practical Applications, arXiv:1605.07678



# Hardware Specialization

**Google Cloud TPU: 180 Tflops** 

**NVIDIA Volta: 100 Tflops** 





• Idea: tailor your chip architecture to the characteristics of a stable workload



**Apple Bionic A11: 0.6 Tflops** 





# Hardware Specialization

**Google Cloud TPU: 180 Tflops** 

**NVIDIA Volta: 100 Tflops** 





### Idea: tailor your chip architecture to the characteristics of a stable workload



**Apple Bionic A11: 0.6 Tflops** 





# **Evolution of Deep Learning**

## Matrix Multiplication: fp32 (A, B) × (B, C)

| Optimization              | New problem specification                        | Reference                                                    |  |  |
|---------------------------|--------------------------------------------------|--------------------------------------------------------------|--|--|
| quantization              | <pre>int4 (A, B) × bool (B, C)</pre>             | Binary Connect, NIPS 15                                      |  |  |
| knowledge<br>distillation | <b>fp32</b> (a, b) × (b, c)                      | Fitnets, ICLR 2015                                           |  |  |
| compression,<br>pruning   | sparse intl6 (A, B) $\times$ (B, C)              | Deep Compression, ICLR 2016                                  |  |  |
| tensor<br>decomposition   | <b>fp32</b> (A,r) x (r,B) × (B,C)                | Compression of deep convolutional neural networks, ICLR 2016 |  |  |
| 2D Con                    | volution:fp32 (H, W, Ci) 🛞 (K, K,                | Co, Ci)                                                      |  |  |
| winograd                  | fp32 FFT-1(FFT((H, W, Ci)) · FFT((K, K, Co, Ci)) | Fast Convolutional Nets with fbfft,<br>arXiv:1412.7580 2014  |  |  |
| depth wise<br>convolution | fp32 (H, W, Ci) ⊗ (K, K, 1, Ci) ⊗ (1, 1, Co, Ci) | MobileNets, arXiv:1704.04861 2017                            |  |  |

| Optimization                                            | New problem specification                        | Reference                                                    |  |  |
|---------------------------------------------------------|--------------------------------------------------|--------------------------------------------------------------|--|--|
| quantization                                            | <b>int4</b> (A, B) × <b>bool</b> (B, C)          | Binary Connect, NIPS 15                                      |  |  |
| knowledge<br>distillation                               | <b>fp32</b> (a, b) × (b, c)                      | Fitnets, ICLR 2015                                           |  |  |
| compression,<br>pruning                                 | sparse intl6 (A, B) $\times$ (B, C)              | Deep Compression, ICLR 2016                                  |  |  |
| tensor<br>decomposition                                 | <b>fp32</b> (A,r) x (r,B) × (B,C)                | Compression of deep convolutional neural networks, ICLR 2016 |  |  |
| <b>2D Convolution : fp32</b> (H, W, Ci) $\otimes$ (K, K |                                                  | Co, Ci)                                                      |  |  |
| winograd                                                | fp32 FFT-1(FFT((H, W, Ci)) · FFT((K, K, Co, Ci)) | Fast Convolutional Nets with fbfft,<br>arXiv:1412.7580 2014  |  |  |
| depth wise<br>convolution                               | fp32 (H, W, Ci) ⊗ (K, K, 1, Ci) ⊗ (1, 1, Co, Ci) | MobileNets, arXiv:1704.04861 2017                            |  |  |

# **Specialization Challenge**

### Tape-out costs for ASICs is exorbitant 10x cost gap between 16nm and 65nm

Risky bet to design hardware accelerators for ever-changing applications

### This can't go on

Design cost by chip component size in nm, \$m





# Flexibility vs. Efficiency Tradeoffs



Source: Bob Broderson, Berkeley Wireless group

## **Discussion Break**

 Does deep learning constitute a s hardware acceleration?

Does deep learning constitute a stable workload to justify ASIC-based

## **TPU: Google's Entry in the Deep Learning Acceleration Race**

Highlights:

- Custom ASIC deployed in datacenters since 2015
- 65k 8-bit matrix multiply that offers peak throughput of 92 TOPS
- Targets mainstream NN applications (MLPs, CNNs, and LSTMs)
- Shows 30-80x improved TOPS/Watt over K80

Jouppi et al., In-Datacenter Performance Analysis of a Tensor Processing Unit, ISCA 2017



- Integer inference (saves 6-30x energy over 16bit FP)
- Large amount of MACs (25x over K80)
- Large amount of on-chip memory (3.5x over K80)

## What make TPUs Efficient?

# **TPU Block Diagram Overview**



Not to Scale



## Systolic Data Flow



# Hardware-Software Interface

- CISC-like instruction set
  - Read Host Memory
  - Read Weights
  - MatrixMultiply/Convolve
  - Activate
  - Write Host Memory



Not to Scale



# **TPU Floor Plan**



Performance [GFLOPS]



TPU Log-Log



Operational Intensity: Ops/weight byte (log scale)

1350 Operations per byte of weight memory fetched

# **TPU Roofline**

## **Arithmetic Intensity in Convolutional Workloads**



Fig. 23. Data reuse opportunities in DNNs [82].

Input Fmaps

Reuse: Filter weights

# What does the roofline tell us about ways to improve the TPU?



Operational Intensity: Ops/weight byte (log scale)

TeraOps/sec (log scale)

- What benchmarks would benefit from improvements on clock frequency?
- What benchmarks would benefit from higher memory bandwidth?

# NVIDIA's Rebuttal to the TPU

|                                 | K80<br>2012        | TPU<br>2015 | P40<br>2016 |  |
|---------------------------------|--------------------|-------------|-------------|--|
| Inferences/Sec<br><10ms latency | 1/ <sub>13</sub> X | 1X          | 2X          |  |
| Training TOPS                   | 6 FP32             | NA          | 12 FP32     |  |
| Inference TOPS                  | 6 FP32             | 90 INT8     | 48 INT8     |  |
| On-chip Memory                  | 16 MB              | 24 MB       | 11 MB       |  |
| Power                           | 300W               | 75W         | 250W        |  |
| Bandwidth                       | 320 GB/S           | 34 GB/S     | 350 GB/S    |  |

https://blogs.nvidia.com/blog/2017/04/10/ai-drives-rise-accelerated-computing-datacenter/

## **Discussion Break**

• What makes a specialized accelerator different from a CPU or GPU?

## **Deep Learning Accelerator Characteristics**



Memory subsystem

Compute

primitives





scalar









tensor



fp16



int8

## HW/SW Co-Design - #1 Tensorization





## HW/SW Co-Design - #2 Memory Architecting

### **Convolution-Optimized**, no batching

Accumulator Wgt **Register File FIFO** 

**Activation Buffer** 

Large activation buffer for spatial reuse Accumulator-local scheduling Weight FIFO for single-use weights

**GEMM-Optimized**, batching

Weight Buffer

Accumulator **Register File** 

**Activation FIFO** 

Activation FIFO for single-use activations Large accumulator storage for GEMM blocking Weight buffer for batched execution



# HW/SW Co-Design - #3 Data Type





But it also affects classification accuracy!





Reducing type width can result in a quadratic increase of compute resources, and linear increase of storage/bandwidth

# **VTA: Versatile Tensor Accelerator**

codesign research and the development of next architectures

• **VTA:** a versatile and extendable deep learning accelerator for software

## Addressing the Specialization Challenge





- Targets FPGAs on low-cost edge devices (PYNQ), and high-end datacenter (in progress), allowing for fast prototyping and deployment
- Leverages HLS-C, for code compactness and easy maintainability (<1000 LoC for IP)</li>





- Built for customization, and modularity (extensible pipeline)
- Community driven (open-sourcing in progress)

## **VTA Features**

- on bandwidth, storage and accuracy needs
- Flexible CISC/RISC ISA for expressive and compact code
- Access-execute decoupling for memory latency hiding

## Customizable tensor core, memory subsystem and data types based

# Customization

**Tensor Intrinsic** 



Memory Subsystem

VS.





Hardware Datatype

<16 x i8> <32 x i4> VS.

32

**Operator Support** 

{ADD, MUL, SHL, MAX} vs. {ADD, SHL, MAX}



# CISC/RISC ISA

- Goal: Provide the right tradeoff between expressiveness and code compactness
  - Use CISC-ness to describe high-level operation (LD, ST, GEMM, ALU)
  - Use RISC-ness to describe low-level memory access patterns
- Micro-op kernels are stored in a local micro op cache to implement different operators







- How do keep computation resources (GEMM) busy:
  - Without latency hiding, we are wasting compute/memory resources

|                                                       | LD | GEMM |  | LD   |  |      |  |
|-------------------------------------------------------|----|------|--|------|--|------|--|
| <ul> <li>By exploiting pipeline parallelis</li> </ul> |    |      |  |      |  |      |  |
|                                                       | LD | LD   |  | LD   |  | LD   |  |
|                                                       |    | GEMM |  | GEMM |  | GEMM |  |
|                                                       |    |      |  |      |  |      |  |

**Pipeline** 

≥ I



m, we can hide memory latency





- Pipeline parallelism requirements:



### Concurrent tasks need to access non-overlapping regions of memory



- Pipeline parallelism requirements:  $\bullet$



### Concurrent tasks need to access non-overlapping regions of memory

- Pipeline parallelism requirements:  $\bullet$ 

  - Data dependences need to be explicit!  $\bullet$



### Concurrent tasks need to access non-overlapping regions of memory

• We want to enforce read-after-write (RAW) dependences

![](_page_35_Figure_2.jpeg)

Without RAW dependence tracking, operations execute as soon as the stage is idle.

36

• We want to enforce read-after-write (RAW) dependences

![](_page_36_Figure_2.jpeg)

- We want to enforce read-after-write (RAW) dependences
- AND we want to enforce write-after-read (WAR) dependences

![](_page_37_Figure_3.jpeg)

- We want to enforce read-after-write (RAW) dependences
- AND we want to enforce write-after-read (WAR) dependences

![](_page_38_Figure_3.jpeg)

## unlocks pipeline parallelism to hide the latency of memory accesses

![](_page_39_Figure_2.jpeg)

Takeaway: work partitioning and explicit dependence graph execution (EDGE)

![](_page_39_Picture_5.jpeg)

# **VTA Design Overview**

![](_page_40_Figure_1.jpeg)

![](_page_41_Picture_0.jpeg)

![](_page_41_Figure_1.jpeg)

![](_page_42_Picture_0.jpeg)

![](_page_42_Figure_1.jpeg)

### Compute stage executes compute commands to perform vector ALU operations or GEMM operations to update the register file according to micro-coded kernels

![](_page_43_Figure_2.jpeg)

![](_page_43_Picture_5.jpeg)

![](_page_44_Picture_0.jpeg)

![](_page_44_Picture_2.jpeg)

![](_page_45_Figure_1.jpeg)

### Memories that connect pipeline stages follow a strict single producer, single consumer rule (fan-in=1, fan-out=1). This enables data flow execution, and makes this design modular.

![](_page_46_Figure_2.jpeg)

# VTA Microprogramming

| <pre>// Pseudo-code for convolution program for the VIA accelerator</pre>                                                                                                                                                                                                                                                                                                                                 |                                         |                                                                                                                                  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|
| <pre>// Virtual Inread 0 0x00: LOAD(PARAM[ 0-71]) 0x01: LOAD(ACTIV[ 0-24]) 0x02: LOAD(LDBUF[ 0-31]) 0x03: PUSH(LD-&gt;EX) 0x04: POP (LD-&gt;EX) 0x05: EXE (ACTIV[ 0-24], PARAM[ 0-71], LDBUF[ 0-31], STBUF[ 0- 7]) 0x06: PUSH(EX-&gt;LD) 0x07: PUSH(EX-&gt;LD) 0x07: PUSH(EX-&gt;ST) 0x08: POP (EX-&gt;ST) 0x08: POP (EX-&gt;ST) 0x09: STOR(STBUF[ 0- 7]) 0x0A: PUSH(ST-&gt;EX) // Virtual Thread 1</pre> | <br>   <br>   <br>   <br>   <br>   <br> | LD@TID0<br>LD@TID0<br>LD@TID0<br>LD@TID0<br>EX@TID0<br>EX@TID0<br>EX@TID0<br>EX@TID0<br>ST@TID0<br>ST@TID0<br>ST@TID0<br>ST@TID0 |
| <pre>0x0B: LOAD(ACTIV[25-50])<br/>0x0C: LOAD(LDBUF[32-63])<br/>0x0D: PUSH(LD-&gt;EX)<br/>0x0E: POP (LD-&gt;EX)<br/>0x0F: EXE (ACTIV[25-50], PARAM[ 0-71], LDBUF[32-63], STBUF[32-39])<br/>0x10: PUSH(EX-&gt;LD)<br/>0x11: PUSH(EX-&gt;LD)<br/>0x12: POP (EX-&gt;ST)<br/>0x12: POP (EX-&gt;ST)<br/>0x13: STOR(STBUF[32-39])<br/>0x14: PUSH(ST-&gt;EX)<br/>// Virtual Thread 2</pre>                        | <br>   <br>   <br>   <br>   <br>   <br> | LD@TID1<br>LD@TID1<br>EX@TID1<br>EX@TID1<br>EX@TID1<br>EX@TID1<br>EX@TID1<br>ST@TID1<br>ST@TID1<br>ST@TID1                       |
| <pre>0x15: POP (EX-&gt;LD)<br/>0x16: LOAD(PARAM[ 0-71])<br/>0x17: LOAD(ACTIV[ 0-24])<br/>0x18: LOAD(LDBUF[ 0-31])<br/>0x19: PUSH(LD-&gt;EX)<br/>0x1A: POP (LD-&gt;EX)<br/>0x1B: POP (ST-&gt;EX)<br/>0x1C: EXE (ACTIV[ 0-24], PARAM[ 0-71], LDBUF[ 0-31], STBUF[ 0- 7])<br/>0x1C: PUSH(EX-&gt;ST)<br/>0x1E: POP (EX-&gt;ST)<br/>0x1F: STOR(STBUF[ 0- 7])<br/>(// Virtual Throad 3</pre>                    | <br>   <br>   <br>   <br>   <br>   <br> | LD@TID2<br>LD@TID2<br>LD@TID2<br>LD@TID2<br>LD@TID2<br>EX@TID2<br>EX@TID2<br>EX@TID2<br>EX@TID2<br>EX@TID2<br>ST@TID2<br>ST@TID2 |
| <pre>0x20: POP (EX-&gt;LD)<br/>0x21: LOAD(ACTIV[25-50])<br/>0x22: LOAD(LDBUF[32-63])<br/>0x23: PUSH(LD-&gt;EX)<br/>0x24: POP (LD-&gt;EX)<br/>0x25: POP (ST-&gt;EX)<br/>0x26: EXE (ACTIV[25-50], PARAM[ 0-71], LDBUF[32-63], STBUF[32-39])<br/>0x27: PUSH(EX-&gt;ST)<br/>0x28: POP (EX-&gt;ST)<br/>0x29: STOR(STBUF[32-39])</pre>                                                                          | <br>   <br>   <br>   <br>   <br>        | LD@TID3<br>LD@TID3<br>LD@TID3<br>LD@TID3<br>EX@TID3<br>EX@TID2<br>EX@TID3<br>EX@TID3<br>ST@TID3<br>ST@TID3                       |

(a) Blocked convolution program with multiple thread contexts

![](_page_47_Figure_3.jpeg)

![](_page_47_Figure_4.jpeg)

![](_page_47_Figure_5.jpeg)

![](_page_47_Figure_6.jpeg)

```
// Convolution access pattern dictated by micro-coded program.
// Each register index is derived as a 2-D affine function.
// e.g. idx_{rf} = a_{rf}y + b_{rf}x + c_{rf}^{0}, where c_{rf}^{0} is specified by
           micro op 0 fields.
11
for y in [0...i)
  for x in [0…j)
     rf[idx_{rf}^{0}] += GEVM(act[idx_{act}^{0}], par[idx_{par}^{0}])
     rf[idx_{rf}^{1}] += GEVM(act[idx_{act}^{1}], par[idx_{par}^{1}])
     rf[idx<sub>rf</sub><sup>n</sup>] += GEVM(act[idx<sub>act</sub><sup>n</sup>], par[idx<sub>par</sub><sup>n</sup>])
```

(b) Convolution micro-coded program

```
// Max-pool, batch normalization and activation function
// access pattern dictated by micro-coded program.
// Each register index is derived as a 2D affine function.
// e.g. idx_{dst} = a_{dst}y + b_{dst}x + c_{dst}^{0}, where c_{dst}^{0} is specified by
           micro op 0 fields.
11
for y in [O…i)
   for x in [0...j)
     // max pooling
     rf[idx_{dst}^{0}] = MAX(rf[idx_{dst}^{0}], rf[idx_{src}^{0}])
     rf[idx_{dst}^{1}] = MAX(rf[idx_{dst}^{1}], rf[idx_{src}^{1}])
      // batch norm
     rf[idx<sub>dst</sub><sup>m</sup>] = MUL(rf[idx<sub>dst</sub><sup>m</sup>], rf[idx<sub>src</sub><sup>m</sup>])
      rf[idx_{dst}^{m+1}] = ADD(rf[idx_{dst}^{m+1}], rf[idx_{src}^{m+1}])
      rf[idx_{dst}^{m+2}] = MUL(rf[idx_{dst}^{m+2}], rf[idx_{src}^{m+2}])
     rf[idx_{dst}^{m+3}] = ADD(rf[idx_{dst}^{m+3}], rf[idx_{src}^{m+3}])
     // activation
      rf[idx_{dst}^{n-1}] = RELU(rf[idx_{dst}^{n-1}], rf[idx_{src}^{n-1}])
      rf[idx_{dst}^{n}] = RELU(rf[idx_{dst}^{n}], rf[idx_{src}^{n}])
```

(c) Max pool, batch norm and activation micro-coded program

# VTA Microprogramming

![](_page_48_Picture_1.jpeg)

(a) Blocked convolution program with multiple thread contexts

micro-coded program

## Building a deep learning accelerator compiler stack in TVM

• **TVM**: An end-to-end compiler & optimization framework for diverse hardware

Chen, Moreau, Jiang, Shen, Yan, Wang, Hu, Ceze, Guestrin and Krishnamurthy TVM: End-to-end Compilation Stack for Deep Learning SysML 2018 (1 of 6 invited talk)

## Addressing the Programmability Challenge

![](_page_50_Figure_1.jpeg)

## **Designing Scheduling Primitives for VTA**

Hardware Feature

**Dense Linear Algebra Core** 

**Explicitly Managed Memory Subsystem** 

**Low-Level Code Generation** 

**Access-Execute Decoupling** for Latency Hiding

What does an optimization stack for deep learning accelerators look like?

**Scheduling Primitive** 

Tensorization

Scoped cache reads/writes

JIT compilation in runtime

Virtual threading

Load Stage

**GEMM Stage** 

![](_page_52_Picture_5.jpeg)

**Store Stage** 

**Execution Phase 1** 

# Virtual Threading

How do we take advantage of pipeline parallelism with virtual threading?

Hardware-centric view: pipeline execution

How do we take advantage of pipeline parallelism with virtual threading?

![](_page_53_Figure_3.jpeg)

### **Execution Phase 1**

# Virtual Threading

Software-centric view: threaded execution

![](_page_54_Figure_3.jpeg)

### **Execution Phase 1**

# Virtual Threading

How do we take advantage of pipeline parallelism with virtual threading?

Software-centric view: threaded execution

**Execution Phase 2** 

![](_page_54_Picture_10.jpeg)

# Virtual Threading

### Software-centric view: threaded execution

![](_page_55_Figure_2.jpeg)

**Execution Phase 1** 

![](_page_55_Figure_5.jpeg)

vthread 0

vthread 1

**Execution Phase 2** 

### Benefit #1: dependences are automatically inserted between successive stages within each virtual thread

![](_page_55_Picture_9.jpeg)

# Virtual Threading

## Software-centric view: threaded execution

![](_page_56_Figure_2.jpeg)

**Execution Phase 1** 

vthread 0

vthread 1

![](_page_56_Figure_6.jpeg)

**Execution Phase 2** 

• Benefit #1: dependences are automatically inserted between successive stages within each virtual thread

 Benefit #2: barriers insert dependences between execution stages to guarantee sequential consistency

![](_page_56_Picture_13.jpeg)

# Virtual Threading

### Legend

push dependence to consumer stage

push dependence to producer stage

![](_page_57_Picture_7.jpeg)

pop dependence from producer stage

pop dependence from consumer stage

Push and pop commands dictate how to interact with the hardware dependence queues

MEMORY LOAD UNIT

Final step: virtual thread lowering into a single instruction stream

![](_page_57_Figure_13.jpeg)

![](_page_57_Figure_14.jpeg)

![](_page_57_Picture_15.jpeg)

# Programming for VTA in TVM

1. How do we partition work and explicitly manage on-chip memories?

![](_page_58_Figure_2.jpeg)

2. How do we take advantage of tensorization?

![](_page_58_Figure_4.jpeg)

3. How do we take advantage of virtual threading?

![](_page_58_Picture_6.jpeg)

X not enough SRAM!

![](_page_58_Picture_9.jpeg)

![](_page_58_Picture_10.jpeg)

![](_page_58_Picture_12.jpeg)

![](_page_58_Picture_13.jpeg)

# **TVM Scheduling Primitives**

1. How do we partition work and explicitly manage on-chip memories?

// Tile yo, xo, yi, xi = s[OUT].tile(y, x, 4, 4)// Cache read INP\_L = s.cache\_read(INP, vta.act, [OUT]) s[INP L].compute at(s[OUT], xo)

### 2. How do we take advantage of tensorization?

// Tensorize s[OUT L].tensorize(ni)

### 3. How do we take advantage of virtual threading?

// Virtual Threading tx, co = s[OUT\_L].split(co, factor=2) s[OUT\_L].bind(tx, thread\_axis("cthread"))

# Full Stack Evaluation (TVM)

### Full evaluation on PYNQ FPGA board

![](_page_60_Figure_2.jpeg)

TVM can exploit latency hiding mechanisms to improve throughput. Utilization improves from at best 52% to 74%.

![](_page_60_Figure_5.jpeg)

![](_page_60_Figure_7.jpeg)

## Resources

- cse599s/lab1
- TVM Tutorial for VTA to be released
- Looking for alpha users of the full VTA open source design

moreau@uw.edu

### Build your own simple VTA accelerator: <u>https://gitlab.cs.washington.edu/</u>

# Thank you

<u>moreau@uw.edu</u>